Pharmaceutical Capsule Manufacturing
- Capsule Manufacturing Process
- Pharmaceutical Capsule Manufacturing Corporation
- Pharmaceutical Capsule Manufacturing Inc
- Pharmaceutical Capsule Manufacturing Products
- Pharma Capsules
Manufacturing and filling of soft gelatin capsules are done same time on the same machine. The content of capsule is filled during the manufacturing the shell. These capsules melt within the minutes in the stomach releasing the content having within it. These contain 5% to 14% of moisture content. Pharmaceutical Capsules 1. Pharmaceutical Capsules Dina Mekhail Gobiga Vanniyasingam John Henen 2. Contents. Introduction John (.5 min). Results and Discussion 2.1 Properties of Powder Dina (2min) 2.2 Types of Capsules Gobiga (1min) 2.3 Hard Capsule Filling Gobiga & John (3 min) 2.4 Soft Shell Capsule Processes Gobiga (2min) 2.5 Advantage vs. Disadvantage of Capsules John (2 min) 2.6.
In the manufacture of pharmaceuticals, encapsulation refers to a range of dosage forms—techniques used to enclose medicines—in a relatively stable shell known as a capsule, allowing them to, for example, be taken orally or be used as suppositories. The two main types of capsules are:
Aug 26, 2016 IndyCar Series, is a 15-race, single-seat championship that competes on speedways throughout the USA, including California and Texas, with the. Indycar series 2005 download.
- Hard-shelled capsules, which contain dry, powdered ingredients or miniature pellets made by e.g. processes of extrusion or spheronization. These are made in two halves: a smaller-diameter “body” that is filled and then sealed using a larger-diameter “cap”.
- Soft-shelled capsules, primarily used for oils and for active ingredients that are dissolved or suspended in oil.
Both of these classes of capsules are made from aqueous solutions of gelling agents, such as animalprotein (mainly gelatin) or plant polysaccharides or their derivatives (such as carrageenans and modified forms of starch and cellulose). Other ingredients can be added to the gelling agent solution including plasticizers such as glycerin or sorbitol to decrease the capsule's hardness, coloring agents, preservatives, disintegrants, lubricants and surface treatment.
Capsule Manufacturing Process
Since their inception, capsules have been viewed by consumers as the most efficient method of taking medication. For this reason, producers of drugs such as OTC analgesics wanting to emphasize the strength of their product developed the “caplet”, a portmanteau of “capsule-shaped tablet”[1], in order to tie this positive association to more efficiently-produced tablet pills, as well as being an easier-to-swallow shape than the usual disk-shaped tablet.
Pharmaceutical Capsule Manufacturing Corporation
Single-piece gel encapsulation ('soft capsules')[edit]
Pharmaceutical Capsule Manufacturing Inc
In 1833, Mothes and Dublanc were granted a patent for a method to produce a single-piece gelatin capsule that was sealed with a drop of gelatin solution. They used individual iron molds for their process, filling the capsules individually with a medicine dropper. Later on, methods were developed that used sets of plates with pockets to form the capsules. Although some companies still use this method, the equipment is no longer produced commercially. All modern soft-gel encapsulation uses variations of a process developed by R. P. Scherer in 1933. His innovation used a rotary die to produce the capsules. They were then filled by blow molding. This method was high-yield, consistent, and reduced waste.
Softgels can be an effective delivery system for oral drugs, especially poorly soluble drugs. This is because the fill can contain liquid ingredients that help increase solubility or permeability of the drug across the membranes in the body. Liquid ingredients are difficult to include in any other solid dosage form such as a tablet. Softgels are also highly suited to potent drugs (for example, where the dose is <100 µg), where the highly reproducible filling process helps ensure each softgel has the same drug content, and because the operators are not exposed to any drug dust during the manufacturing process.
In 1949, the Lederle Laboratories division of the American Cyanamid Company developed the 'Accogel' process, allowing powders to be accurately filled into soft gelatin capsules.
Two-piece gel encapsulation ('hard capsules')[edit]
James Murdock of London patented the two-piece telescoping gelatin capsule in 1847.[2] The capsules are made in two parts by dipping metal pins in the gelling agent solution. The capsules are supplied as closed units to the pharmaceutical manufacturer. Before use, the two halves are separated, the capsule is filled with powder or more normally pellets made by the process of Extrusion & Spheronization (either by placing a compressed slug of powder into one half of the capsule, or by filling one half of the capsule with loose powder) and the other half of the capsule is pressed on. With the compressed slug method, weight varies less between capsules. However, the machinery required to manufacture them is more complex.[3]
The powder or spheroids inside the capsule contains the active ingredient(s) and any excipients, such as binders, disintegrants, fillers, glidant, and preservatives.
Manufacturing materials[edit]
Gelatin capsules, informally called gel caps or gelcaps, are composed of gelatin manufactured from the collagen of animal skin or bone.
Vegetable capsules are composed of hypromellose, a polymer formulated from cellulose.or Pullulan, polysaccharide polymer produced from tapioca starch.
Manufacturing equipment[edit]
The process of encapsulation of hard gelatin capsules can be done on manual, semi-automatic and automatic capsule filling machines. Softgels are filled at the same time as they are produced and sealed on the rotary die of a fully automatic machine. Capsule fill weight is a critical attribute in encapsulation and various real time fill weight monitoring techniques such as near-infrared spectroscopy (NIR) and vibrational spectroscopy are used, as well as in-line weight checks, to ensure product quality.[4]
Standard sizes of two-piece capsules[edit]
Size | Volume (mL)[A] | Locked length (mm)[A] | External diameter (mm)[A] |
---|---|---|---|
5 | 0.13 | 11.1 | 4.91 |
4 | 0.20 | 14.3 | 5.31 |
3 | 0.27 | 15.9 | 5.82 |
2 | 0.37 | 18 | 6.35 |
1 | 0.48 | 19.4 | 6.91 |
0 | 0.67 | 21.7 | 7.65 |
0E | 0.7 | 23.1 | 7.65 |
00 | 0.95 | 23.3 | 8.53 |
000 | 1.36 | 26.14 | 9.91 |
13 | 3.2 | 30 | 15.3 |
12 | 5 | 40.5 | 15.3 |
12el | 7.5 | 57 | 15.5 |
11 | 10 | 47.5 | 20.9 |
10 | 18 | 64 | 23.4 |
7 | 24 | 78 | 23.4 |
Su07 | 28 | 88.5 | 23.4 |
A Approximate |
See also[edit]
References[edit]
Pharmaceutical Capsule Manufacturing Products
- ^Safire, William (1986-03-09). 'On Language; The Caplet Solution'. The New York Times. Retrieved 2017-12-06.
- ^'History of dosage forms and basic preparations'. Encyclopedia of Pharmaceutical Technology. 7. Informa Health Care. 1998. pp. 304–306. ISBN0-8247-2806-8.
- ^Bill Bennett; Graham Cole (2003). Pharmaceutical Production, an Engineering Guide. IChemE. pp. 126–129. ISBN0-85295-440-9.
- ^'Pharmaceutical Encapsulation'. PharmaCMC. Archived from the original on 6 October 2016. Retrieved 27 September 2016.
- L. Lachman; H.A. Lieberman; J.L. Kanig (1986). The Theory and Practice of Industrial Pharmacy (Third ed.). Lea & Febiger, Philadelphia. ISBN0-8121-0977-5.